If ( f ) and ( g ) are inverse functions of each other, it means that when ( f ) takes an input ( x ) and produces an output ( y ), ( g ) can take ( y ) as input and produce ( x ) as output. In other words, if ( f(x) = y ), then ( g(y) = x ).
This relationship implies that the composition of the two functions, ( f(g(x)) ) and ( g(f(x)) ), will return the input ( x ) for any value of ( x ).
If the functions ( f ) and ( g ) are inverses, they are said to "undo" each other. This means that applying both functions in succession will result in the identity function, ( f(g(x)) = g(f(x)) = x ).
When two functions are inverses of each other, they mirror each other across the line ( y = x ) on a graph. This means that if you were to graph ( f ), then reflect it across the line ( y = x ), you will end up with the graph of ( g ) and vice versa.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page